Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Deep Learning with PyTorch: A practical approach to building neural network models using PyTorch

Buy

Build neural network models in text, vision and advanced analytics using PyTorch

Key Features

  • Learn PyTorch for implementing cutting-edge deep learning algorithms.
  • Train your neural networks for higher speed and flexibility and learn how to implement them in various scenarios;
  • Cover various advanced neural network architecture such as ResNet, Inception, DenseNet and more with practical examples;

Book Description

Deep learning powers the most intelligent systems in the world, such as Google Voice, Siri, and Alexa. Advancements in powerful hardware, such as GPUs, software frameworks such as PyTorch, Keras, Tensorflow, and CNTK along with the availability of big data have made it easier to implement solutions to problems in the areas of text, vision, and advanced analytics.

This book will get you up and running with one of the most cutting-edge deep learning libraries?PyTorch. PyTorch is grabbing the attention of deep learning researchers and data science professionals due to its accessibility, efficiency and being more native to Python way of development. You'll start off by installing PyTorch, then quickly move on to learn various fundamental blocks that power modern deep learning. You will also learn how to use CNN, RNN, LSTM and other networks to solve real-world problems. This book explains the concepts of various state-of-the-art deep learning architectures, such as ResNet, DenseNet, Inception, and Seq2Seq, without diving deep into the math behind them. You will also learn about GPU computing during the course of the book. You will see how to train a model with PyTorch and dive into complex neural networks such as generative networks for producing text and images.

By the end of the book, you'll be able to implement deep learning applications in PyTorch with ease.

What you will learn

  • Use PyTorch for GPU-accelerated tensor computations
  • Build custom datasets and data loaders for images and test the models using torchvision and torchtext
  • Build an image classifier by implementing CNN architectures using PyTorch
  • Build systems that do text classification and language modeling using RNN, LSTM, and GRU
  • Learn advanced CNN architectures such as ResNet, Inception, Densenet, and learn how to use them for transfer learning
  • Learn how to mix multiple models for a powerful ensemble model
  • Generate new images using GAN's and generate artistic images using style transfer

Who This Book Is For

This book is for machine learning engineers, data analysts, data scientists interested in deep learning and are looking to explore implementing advanced algorithms in PyTorch. Some knowledge of machine learning is helpful but not a mandatory need. Working knowledge of Python programming is expected.

Table of Contents

  1. Getting Started with Pytorch for Deep Learning
  2. Mathematical building blocks of Neural Networks
  3. Getting Started with Neural Networks
  4. Fundamentals of Machine Learning
  5. Deep Learning for Computer Vision
  6. Natural Language Processing for PyTorch
  7. Advanced neural network architectures
  8. Generative networks
  9. Conclusion
(HTML tags aren't allowed.)

UNDERSTANDING STATISTICS
UNDERSTANDING STATISTICS
This is a book on the understanding of statistical concepts. If you have no knowledge, you will receive basic knowledge, without having to worry much about mathematics. And if you already know something about statistical methods, you will get a better understanding of the ideas behind them. All basic concepts are discussed in detail and...
Python Deep Learning: Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow, 2nd Edition
Python Deep Learning: Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow, 2nd Edition

Learn advanced state-of-the-art deep learning techniques and their applications using popular Python libraries

Key Features

  • Build a strong foundation in neural networks and deep learning with Python libraries
  • Explore advanced deep learning techniques and their applications...
Machine Learning For Dummies
Machine Learning For Dummies
One of Mark Cuban’s top reads for better understanding A.I. (inc.com, 2021)

Your comprehensive entry-level guide to machine learning

While machine learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie Ex Machina—it is a form of artificial...


Deep Learning Cookbook: Practical Recipes to Get Started Quickly
Deep Learning Cookbook: Practical Recipes to Get Started Quickly

Deep learning doesn’t have to be intimidating. Until recently, this machine-learning method required years of study, but with frameworks such as Keras and Tensorflow, software engineers without a background in machine learning can quickly enter the field. With the recipes in this cookbook, you’ll learn how to solve...

Cloud Computing Basics: A Non-Technical Introduction
Cloud Computing Basics: A Non-Technical Introduction
Ever since my childhood I had a fascination with clouds. Real clouds up in the sky, white and fluffy or gray and gloomy, afforded an ever-present drama unfolding above for the curious spectator looking toward the heavens, as inquisitive children are wont to do. Maybe it was because of ample exposure to the perennial cloudiness of...
Android Programming for Beginners: Build in-depth, full-featured Android apps starting from zero programming experience, 3rd Edition
Android Programming for Beginners: Build in-depth, full-featured Android apps starting from zero programming experience, 3rd Edition

Learn the Java and Android skills you need to start developing powerful mobile applications with the help of actionable steps

Key Features

  • Kick-start your Android programming career or just have fun publishing apps to the Google Play marketplace
  • Get a first principles...
©2021 LearnIT (support@pdfchm.net) - Privacy Policy