| Two most important essays by the famous German mathematician: First provides an arithmetic, rigorous foundation for the irrational numbers, thereby a rigorous meaning of continuity in analysis. Second is an attempt to give logical basis for transfinite numbers and properties of the natural numbers.
MY attention was first directed toward the considerations which form the subject of this pamphlet in the autumn of 1858. As professor in the Polytechnic School in Zurich I found myself for the first time obliged to lecture upon the elements of the differential calculus and felt more keenly than ever before the lack of a really scientific foundation for arithmetic. In discussing the notion of the approach of a variable magnitude to a fixed limiting value, and especially in proving the theorem that every magnitude which grows continually, but not beyond all limits, must certainly approach a limiting value, I had recourse to geometric evidences. Even now such resort to geometric intuition in a first presentation of the differential calculus, I regard as exceedingly useful, from the didactic standpoint, and indeed indispensable, if one does not wish to lose too much time. But that this form of introduction into the differential calculus can make no claim to being scientific, no one will deny. |