Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition

Buy

An easy-to-follow, step-by-step guide for getting to grips with the real-world application of machine learning algorithms

Key Features

  • Explore statistics and complex mathematics for data-intensive applications
  • Discover new developments in EM algorithm, PCA, and bayesian regression
  • Study patterns and make predictions across various datasets

Book Description

Machine learning has gained tremendous popularity for its powerful and fast predictions with large datasets. However, the true forces behind its powerful output are the complex algorithms involving substantial statistical analysis that churn large datasets and generate substantial insight.

This second edition of Machine Learning Algorithms walks you through prominent development outcomes that have taken place relating to machine learning algorithms, which constitute major contributions to the machine learning process and help you to strengthen and master statistical interpretation across the areas of supervised, semi-supervised, and reinforcement learning. Once the core concepts of an algorithm have been covered, you’ll explore real-world examples based on the most diffused libraries, such as scikit-learn, NLTK, TensorFlow, and Keras. You will discover new topics such as principal component analysis (PCA), independent component analysis (ICA), Bayesian regression, discriminant analysis, advanced clustering, and gaussian mixture.

By the end of this book, you will have studied machine learning algorithms and be able to put them into production to make your machine learning applications more innovative.

What you will learn

  • Study feature selection and the feature engineering process
  • Assess performance and error trade-offs for linear regression
  • Build a data model and understand how it works by using different types of algorithm
  • Learn to tune the parameters of Support Vector Machines (SVM)
  • Explore the concept of natural language processing (NLP) and recommendation systems
  • Create a machine learning architecture from scratch

Who this book is for

Machine Learning Algorithms is for you if you are a machine learning engineer, data engineer, or junior data scientist who wants to advance in the field of predictive analytics and machine learning. Familiarity with R and Python will be an added advantage for getting the best from this book.

Table of Contents

  1. A Gentle Introduction to Machine Learning
  2. Important Elements in Machine Learning
  3. Feature Selection and Feature Engineering
  4. Regression Algorithms
  5. Linear Classification Algorithms
  6. Naive Bayes and Discriminant Analysis
  7. Support Vector Machines
  8. Decision Trees and Ensemble Learning
  9. Clustering Fundamentals
  10. Advanced Clustering
  11. Hierarchical Clustering
  12. Introducing Recommendation Systems
  13. Introducing Natural Language Processing
  14. Topic Modeling and Sentiment Analysis in NLP
  15. Introducing Neural Networks
  16. Advanced Deep Learning Models
  17. Creating a Machine Learning Architecture
(HTML tags aren't allowed.)

Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python
Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python
Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms...
Machine Learning with Python: The Definitive Tool to Improve Your Python Programming and Deep Learning to Take You to The Next Level of Coding and Algorithms Optimization
Machine Learning with Python: The Definitive Tool to Improve Your Python Programming and Deep Learning to Take You to The Next Level of Coding and Algorithms Optimization

Machine learning is rapidly changing the world, from diverse types of applications and research pursued in industry and academia. 

Machine learning is affecting every part of your daily life. From voice assistants using NLP and machine learning to make appointments, check your calendar, and play music,...

Python: Beginner's Guide to Artificial Intelligence: Build applications to intelligently interact with the world around you using Python
Python: Beginner's Guide to Artificial Intelligence: Build applications to intelligently interact with the world around you using Python

Develop real-world applications powered by the latest advances in intelligent systems

Key Features

  • Gain real-world contextualization using deep learning problems concerning research and application
  • Get to know the best practices to improve and optimize your machine...

Deep Learning Cookbook: Practical Recipes to Get Started Quickly
Deep Learning Cookbook: Practical Recipes to Get Started Quickly

Deep learning doesn’t have to be intimidating. Until recently, this machine-learning method required years of study, but with frameworks such as Keras and Tensorflow, software engineers without a background in machine learning can quickly enter the field. With the recipes in this cookbook, you’ll learn how to solve...

Deep Learning with PyTorch: A practical approach to building neural network models using PyTorch
Deep Learning with PyTorch: A practical approach to building neural network models using PyTorch

Build neural network models in text, vision and advanced analytics using PyTorch

Key Features

  • Learn PyTorch for implementing cutting-edge deep learning algorithms.
  • Train your neural networks for higher speed and flexibility and learn how to implement them in various...
Practical Guide to Linux Commands, Editors, and Shell Programming, A (2nd Edition)
Practical Guide to Linux Commands, Editors, and Shell Programming, A (2nd Edition)

For use with all versions of Linux, including Ubuntu,™ Fedora,™ openSUSE,™ Red Hat,® Debian, Mandriva, Mint, and now OS X, too!

  • Get more done faster, and become a true Linux guru by mastering the command line!
  • ...
©2021 LearnIT (support@pdfchm.net) - Privacy Policy