The clock or time synchronization problem in wireless sensor networks (WSNs) requires a procedure for providing a common notion of time across the nodes of WSNs. In general, clock synchronization is viewed as a critical factor in maintaining the good functioning of WSNs due mainly to their decentralized organization and timing uncertainties caused by the imperfections in hardware oscillators and message delays at the physical and medium access control (MAC) layers. In addition, synchronization of the nodes of wireless sensor networks is crucial for implementing fundamental operations such as power management, transmission scheduling, data fusion, localization and tracking, and security protocols to name only a few applications.
The aim of this book is to provide an introduction to the clock synchronization problem of WSNs from a statistical signal processing viewpoint. Therefore, most of the topics presented in this book deal with building efficient clock offset estimation algorithms and performance benchmarks for general synchronization approaches that rely on sender–receiver and receiver–receiver timing packet exchange mechanisms. A summary of the key features of the most representative protocols proposed for clock synchronization of WSNs is also presented, together with some interesting open research problems.