| It is obvious from the details of his career that Angus knows more about optical coatings, both in terms of design and of fabrication, than most of us put together. It is therefore quite expected that I feel free to state that, in my opinion, this book is a necessity, rather on par with having the use of a coating facility, a good coating program, and a fast computer, for anybody in the field of thin-film optical coatings and filters. Therefore, if you are new in this field, your first priority should be to make sure that you have the undivided use of a copy of this book … All in all, the book is a good statement of the state of the art of thin-film deposition theory and practice at the turn of the millennium. -Roger M. Wood, Elsevier
The third edition is no less rich and includes expanded references and information on many advances in design and technology since the second edition was published in 1986 … [it] is a must-have addition to the library of any optical thin-film theorist or practitioner. It provides extensive methods to use in achieving desired optical performance for a broad range of coating types and extensive references for one to use in delving deeper into these topics. -Dale E. Morton, Denton Vacuum, LLC, SVC News
The foreword to the second edition of this book identified increasing computer power and availability as especially significant influences in optical coating design. This has continued to the point where any description I might give of current computing speed and capacity would be completely out of date by the time this work is in print. Software for coating design (and for other tasks) is now so advanced that commercial packages have almost completely replaced individually written programs. I have often heard it suggested that this removes all need for skill or even knowledge from the act of coating design. I firmly believe that the need for skill and understanding is actually increased by the availability of such powerful tools. The designer who knows very well what he or she is doing is always able to achieve better results than the individual who does not. Coating design still contains compromises. Some aspects of performance are impossible to attain. The results offered by an automatic process that is attempting to reach impossible goals are usually substantially poorer than those when the goals are realistic. The aim of the book, therefore, is still to improve understanding.
During the years since publication of the second edition, the energetic processes, and particularly ion-assisted deposition, have been widely adopted. There are several consequences. The improved stability of optical constants of the materials has enabled the reliable production of coatings of continuously increasing complexity. We even see coatings produced now purely for their aesthetic appeal. Then the enormous improvement in environmental stability has opened up new applications, especially in communications. Unprecedented temperature stability of optical coatings can now be achieved. Specially designed coatings have simplified the construction of ultrafast lasers. Banknotes of many countries inhibit counterfeiting by carrying patches exhibiting the typical iridescence of optical coatings. Coatings to inhibit the effects of glare are now integral parts of visual display units. I mentioned in my previous foreword |