




Kernel Smoothing: Principles, Methods and Applications
Comprehensive theoretical overview of kernel smoothing methods with motivating examples
Kernel smoothing is a flexible nonparametric curve estimation method that is applicable when parametric descriptions of the data are not sufficiently adequate. This book explores theory and methods of kernel smoothing in a variety of...   Using R for Data Management, Statistical Analysis, and Graphics
Quick and Easy Access to Key Elements of Documentation
Includes worked examples across a wide variety of applications, tasks, and graphics
Using R for Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in R, without having to...   


Probability and Statistics for Computer Scientists
StudentFriendly Coverage of Probability, Statistical Methods, Simulation, and Modeling Tools
Incorporating feedback from instructors and researchers who used the previous edition, Probability and Statistics for Computer Scientists, Second Edition helps students understand general methods of stochastic...   Data Mining and Business Analytics with R
Collecting, analyzing, and extracting valuable information froma large amount of data requires easily accessible, robust,computational and analytical tools. Data Mining and BusinessAnalytics with R utilizes the open source software R for theanalysis, exploration, and simplification of large highdimensionaldata sets. As a result, readers are...   Practical Statistics for Data Scientists: 50 Essential Concepts
Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their... 


Result Page: 18 17 16 15 14 13 12 11 10 9 