Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Machine Learning in Action

Buy

After college I went to work for Intel in California and mainland China. Originally my plan was to go back to grad school after two years, but time flies when you are having fun, and two years turned into six. I realized I had to go back at that point, and I didn’t want to do night school or online learning, I wanted to sit on campus and soak up everything a university has to offer. The best part of college is not the classes you take or research you do, but the peripheral things: meeting people, going to seminars, joining organizations, dropping in on classes, and learning what you don’t know.

Summary

Machine Learning in Action is unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. You'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification.

About the Book

A machine is said to learn when its performance improves with experience. Learning requires algorithms and programs that capture data and ferret out the interesting or useful patterns. Once the specialized domain of analysts and mathematicians, machine learning is becoming a skill needed by many.

Machine Learning in Action is a clearly written tutorial for developers. It avoids academic language and takes you straight to the techniques you'll use in your day-to-day work. Many (Python) examples present the core algorithms of statistical data processing, data analysis, and data visualization in code you can reuse. You'll understand the concepts and how they fit in with tactical tasks like classification, forecasting, recommendations, and higher-level features like summarization and simplification.

Readers need no prior experience with machine learning or statistical processing. Familiarity with Python is helpful.

What's Inside
  • A no-nonsense introduction
  • Examples showing common ML tasks
  • Everyday data analysis
  • Implementing classic algorithms like Apriori and Adaboos

===================================

Table of Contents
PART 1 CLASSIFICATION
PART 2 FORECASTING NUMERIC VALUES WITH REGRESSION
PART 3 UNSUPERVISED LEARNING
PART 4 ADDITIONAL TOOLS
  1. Machine learning basics
  2. Classifying with k-Nearest Neighbors
  3. Splitting datasets one feature at a time: decision trees
  4. Classifying with probability theory: naïve Bayes
  5. Logistic regression
  6. Support vector machines
  7. Improving classification with the AdaBoost meta algorithm
  8. Predicting numeric values: regression
  9. Tree-based regression
  10. Grouping unlabeled items using k-means clustering
  11. Association analysis with the Apriori algorithm
  12. Efficiently finding frequent itemsets with FP-growth
  13. Using principal component analysis to simplify data
  14. Simplifying data with the singular value decomposition
  15. Big data and MapReduce

 

(HTML tags aren't allowed.)

An Introduction to Partial Differential Equations
An Introduction to Partial Differential Equations
"This is an introductory book on the subject of partial differential equations which is suitable for a large variety of basic courses on this topic. In particular, it can be used as a textbook or self-study book for large classes of readers with interests in mathematics, engineering, and related fields. Its usefulness stems from its clarity,...
The Student's Introduction to MATHEMATICA®: A Handbook for Precalculus, Calculus, and Linear Algebra
The Student's Introduction to MATHEMATICA®: A Handbook for Precalculus, Calculus, and Linear Algebra
"It's a good book... a book that most students can benefit from."
MAA Reviews

The unique feature of this compact student's introduction is that it presents concepts in an order that closely follows a standard mathematics curriculum, rather than structure the book along features of the software. As a result,
...
Python for Bioinformatics
Python for Bioinformatics

Programming knowledge is often necessary for finding a solution to a biological problem. Based on the author’s experience working for an agricultural biotechnology company, Python for Bioinformatics helps scientists solve their biological problems by helping them understand the basics of programming. Requiring no prior...


Bayesian Biostatistics and Diagnostic Medicine
Bayesian Biostatistics and Diagnostic Medicine
Bayesian methods are being used more often than ever before in biology and medicine. For example, at the University of Texas MD Anderson Cancer Center, Bayesian sequential stopping rules routinely are used for the design of clinical trials. This book is based on the author’s experience working with a variety of...
Advances in Cardiac Signal Processing
Advances in Cardiac Signal Processing

This book provides a comprehensive review of progress in the acquisition and extraction of electrocardiogram signals. The coverage is extensive, from a review of filtering techniques to measurement of heart rate variability, to aortic pressure measurement, to strategies for assessing contractile effort of the left ventricle and more. The book...

MATLAB Machine Learning
MATLAB Machine Learning
This book is a comprehensive guide to machine learning with worked examples in MATLAB. It starts with an overview of the history of Artificial Intelligence and automatic control and how the field of machine learning grew from these. It provides descriptions of all major areas in machine learning.

The book reviews
...
┬ę2020 LearnIT (support@pdfchm.net) - Privacy Policy