A complete set of statistical tools for beginning financial analysts from a leading authority
Written by one of the leading experts on the topic, An Introduction to Analysis of Financial Data with R explores basic concepts of visualization of financial data. Through a fundamental balance between theory and...
Gain a broad foundation of advanced data analytics concepts and discover the recent revolution in databases such as Neo4j, Elasticsearch, and MongoDB. This book discusses how to implement ETL techniques including topical crawling, which is applied in domains such as...
Get more control of your applications performances in development and production and know how to meet your Service Level Agreement on critical microservices.
Key Features
Learn how to write a JavaEE application with performance constraints (Service Level Agreement?SLA) leveraging the...
Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so...
Take your Python machine learning ideas and create serverless web applications accessible by anyone with an Internet connection. Some of the most popular serverless cloud providers are covered in this book?Amazon, Microsoft, Google, and PythonAnywhere.
You will work through a series of common Python data science problems...
Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner....
With an emphasis on social science applications, Event History Analysis with R presents an introduction to survival and event history analysis using real-life examples. Keeping mathematical details to a minimum, the book covers key topics, including both discrete and continuous time data, parametric proportional...
This book bridges the latest software applications with the benefits of modern resampling techniques
Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. This groundbreaking book shows how to apply modern resampling techniques...