Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Natural Language Processing with TensorFlow: Teach language to machines using Python's deep learning library

Buy

Write modern natural language processing applications using deep learning algorithms and TensorFlow

Key Features

  • Focuses on more efficient natural language processing using TensorFlow
  • Covers NLP as a field in its own right to improve understanding for choosing TensorFlow tools and other deep learning approaches
  • Provides choices for how to process and evaluate large unstructured text datasets
  • Learn to apply the TensorFlow toolbox to specific tasks in the most interesting field in artificial intelligence

Book Description

Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today's data streams, and apply these tools to specific NLP tasks.

Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator.

After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks.

What you will learn

  • Core concepts of NLP and various approaches to natural language processing
  • How to solve NLP tasks by applying TensorFlow functions to create neural networks
  • Strategies to process large amounts of data into word representations that can be used by deep learning applications
  • Techniques for performing sentence classification and language generation using CNNs and RNNs
  • About employing state-of-the art advanced RNNs, like long short-term memory, to solve complex text generation tasks
  • How to write automatic translation programs and implement an actual neural machine translator from scratch
  • The trends and innovations that are paving the future in NLP

Who This Book Is For

This book is for Python developers with a strong interest in deep learning, who want to learn how to leverage TensorFlow to simplify NLP tasks. Fundamental Python skills are assumed, as well as some knowledge of machine learning and undergraduate-level calculus and linear algebra. No previous natural language processing experience required, although some background in NLP or computational linguistics will be helpful.

Table of Contents

  1. Introduction
  2. How to Get TensorFlow to Work
  3. Producing Word Embeddings with Word2Vec
  4. Advanced Word2Vec
  5. Sentence Classification with CNNs
  6. Language Modelling with RNNs
  7. What is LSTM?
  8. Applying LSTM to Text Generation
  9. Applications of LSTM: Image Caption Generation
  10. Neural Machine Translation
  11. NLP developments and Trends
  12. Appendix I Linear Algebra and Statistics
(HTML tags aren't allowed.)

Reinforcement Learning with TensorFlow: A beginner's guide to designing self-learning systems with TensorFlow and OpenAI Gym
Reinforcement Learning with TensorFlow: A beginner's guide to designing self-learning systems with TensorFlow and OpenAI Gym

Leverage the power of reinforcement learning techniques to develop self-learning systems using TensorFlow

Key Features

  • Explore reinforcement learning concepts and their implementation using TensorFlow
  • Discover different problem-solving methods for reinforcement...
Python Deep Learning: Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow, 2nd Edition
Python Deep Learning: Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow, 2nd Edition

Learn advanced state-of-the-art deep learning techniques and their applications using popular Python libraries

Key Features

  • Build a strong foundation in neural networks and deep learning with Python libraries
  • Explore advanced deep learning techniques and their applications...
Python Artificial Intelligence Projects for Beginners: Get up and running with Artificial Intelligence using 8 smart and exciting AI applications
Python Artificial Intelligence Projects for Beginners: Get up and running with Artificial Intelligence using 8 smart and exciting AI applications

Build smart applications by implementing real-world artificial intelligence projects

Key Features

  • Explore a variety of AI projects with Python
  • Get well-versed with different types of neural networks and popular deep learning algorithms
  • Leverage popular...

Python GUI Programming with Tkinter: Develop responsive and powerful GUI applications with Tkinter
Python GUI Programming with Tkinter: Develop responsive and powerful GUI applications with Tkinter

Find out how to create visually stunning and feature-rich applications by empowering Python's built-in Tkinter GUI toolkit

Key Features

  • Explore Tkinter's powerful features to easily design and customize your GUI application
  • Learn the basics of 2D and 3D animation...
Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python
Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python
Learn how to use TensorFlow 2.0 to build machine learning and deep learning models with complete examples. 

The book begins with introducing TensorFlow 2.0 framework and the major changes from its last release. Next, it focuses on building Supervised Machine Learning models using TensorFlow 2.0.
...
Python Projects for Beginners: A Ten-Week Bootcamp Approach to Python Programming
Python Projects for Beginners: A Ten-Week Bootcamp Approach to Python Programming

Immerse yourself in learning Python and introductory data analytics with this book’s project-based approach. Through the structure of a ten-week coding bootcamp course, you’ll learn key concepts and gain hands-on experience through weekly projects.

Each chapter in this book is presented as a full week of...

©2020 LearnIT (support@pdfchm.net) - Privacy Policy