Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Natural Language Processing with TensorFlow: Teach language to machines using Python's deep learning library

Buy

Write modern natural language processing applications using deep learning algorithms and TensorFlow

Key Features

  • Focuses on more efficient natural language processing using TensorFlow
  • Covers NLP as a field in its own right to improve understanding for choosing TensorFlow tools and other deep learning approaches
  • Provides choices for how to process and evaluate large unstructured text datasets
  • Learn to apply the TensorFlow toolbox to specific tasks in the most interesting field in artificial intelligence

Book Description

Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today's data streams, and apply these tools to specific NLP tasks.

Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator.

After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks.

What you will learn

  • Core concepts of NLP and various approaches to natural language processing
  • How to solve NLP tasks by applying TensorFlow functions to create neural networks
  • Strategies to process large amounts of data into word representations that can be used by deep learning applications
  • Techniques for performing sentence classification and language generation using CNNs and RNNs
  • About employing state-of-the art advanced RNNs, like long short-term memory, to solve complex text generation tasks
  • How to write automatic translation programs and implement an actual neural machine translator from scratch
  • The trends and innovations that are paving the future in NLP

Who This Book Is For

This book is for Python developers with a strong interest in deep learning, who want to learn how to leverage TensorFlow to simplify NLP tasks. Fundamental Python skills are assumed, as well as some knowledge of machine learning and undergraduate-level calculus and linear algebra. No previous natural language processing experience required, although some background in NLP or computational linguistics will be helpful.

Table of Contents

  1. Introduction
  2. How to Get TensorFlow to Work
  3. Producing Word Embeddings with Word2Vec
  4. Advanced Word2Vec
  5. Sentence Classification with CNNs
  6. Language Modelling with RNNs
  7. What is LSTM?
  8. Applying LSTM to Text Generation
  9. Applications of LSTM: Image Caption Generation
  10. Neural Machine Translation
  11. NLP developments and Trends
  12. Appendix I Linear Algebra and Statistics
(HTML tags aren't allowed.)

Deep Learning Cookbook: Practical Recipes to Get Started Quickly
Deep Learning Cookbook: Practical Recipes to Get Started Quickly

Deep learning doesn’t have to be intimidating. Until recently, this machine-learning method required years of study, but with frameworks such as Keras and Tensorflow, software engineers without a background in machine learning can quickly enter the field. With the recipes in this cookbook, you’ll learn how to solve...

Keras Reinforcement Learning Projects: 9 projects exploring popular reinforcement learning techniques to build self-learning agents
Keras Reinforcement Learning Projects: 9 projects exploring popular reinforcement learning techniques to build self-learning agents

A practical guide to mastering reinforcement learning algorithms using Keras

Key Features

  • Build projects across robotics, gaming, and finance fields, putting reinforcement learning (RL) into action
  • Get to grips with Keras and practice on real-world unstructured...
Python Deep Learning: Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow, 2nd Edition
Python Deep Learning: Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow, 2nd Edition

Learn advanced state-of-the-art deep learning techniques and their applications using popular Python libraries

Key Features

  • Build a strong foundation in neural networks and deep learning with Python libraries
  • Explore advanced deep learning techniques and their applications...

Excel 2019 Power Programming with VBA
Excel 2019 Power Programming with VBA
Maximize your Excel experience with VBA

Excel 2019 Power Programming with VBA is fully updated to cover all the latest tools and tricks of Excel 2019. Encompassing an analysis of Excel application development and a complete introduction to Visual Basic for Applications (VBA), this comprehensive book presents all...

Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning
Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning

From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural...

React Cookbook: Create dynamic web apps with React using Redux, Webpack, Node.js, and GraphQL
React Cookbook: Create dynamic web apps with React using Redux, Webpack, Node.js, and GraphQL

Over 66 hands-on recipes that cover UI development, animations, component architecture, routing, databases, testing, and debugging with React

Key Features

  • Use essential hacks and simple techniques to solve React application development challenges
  • Create native mobile...
©2020 LearnIT (support@pdfchm.net) - Privacy Policy