Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Reinforcement Learning with TensorFlow: A beginner's guide to designing self-learning systems with TensorFlow and OpenAI Gym

Buy

Leverage the power of reinforcement learning techniques to develop self-learning systems using TensorFlow

Key Features

  • Explore reinforcement learning concepts and their implementation using TensorFlow
  • Discover different problem-solving methods for reinforcement learning
  • Apply reinforcement learning to autonomous driving cars, robobrokers, and more

Book Description

Reinforcement learning (RL) allows you to develop smart, quick and self-learning systems in your business surroundings. It's an effective method for training learning agents and solving a variety of problems in Artificial Intelligence - from games, self-driving cars and robots, to enterprise applications such as data center energy saving (cooling data centers) and smart warehousing solutions.

The book covers major advancements and successes achieved in deep reinforcement learning by synergizing deep neural network architectures with reinforcement learning. You'll also be introduced to the concept of reinforcement learning, its advantages and the reasons why it's gaining so much popularity. You'll explore MDPs, Monte Carlo tree searches, dynamic programming such as policy and value iteration, and temporal difference learning such as Q-learning and SARSA. You will use TensorFlow and OpenAI Gym to build simple neural network models that learn from their own actions. You will also see how reinforcement learning algorithms play a role in games, image processing and NLP.

By the end of this book, you will have gained a firm understanding of what reinforcement learning is and understand how to put your knowledge to practical use by leveraging the power of TensorFlow and OpenAI Gym.

What you will learn

  • Implement state-of-the-art reinforcement learning algorithms from the basics
  • Discover various reinforcement learning techniques such as MDP, Q Learning, and more
  • Explore the applications of reinforcement learning in advertisement, image processing, and NLP
  • Teach a reinforcement learning model to play a game using TensorFlow and OpenAI Gym
  • Understand how reinforcement learning applications are used in robotics

Who This Book Is For

If you want to get started with reinforcement learning using TensorFlow in the most practical way, this book will be a useful resource. The book assumes prior knowledge of machine learning and neural network programming concepts, as well as some understanding of the TensorFlow framework. No previous experience of reinforcement learning is required.

Table of Contents

  1. Deep Learning - Architectures and Frameworks
  2. Training Reinforcement Learning Agents Using OpenAI Gym
  3. Markov Decision Process (MDP)
  4. Policy Gradients
  5. Q-Learning & Deep Q Networks
  6. Asynchronous Methods
  7. Robo Everything - Real Strategy Gaming
  8. AlphaGo - Reinforcement Learning at its Best
  9. Reinforcement Learning in Autonomous Driving
  10. Financial Portfolio Management
  11. Reinforcement Learning in Robotics
  12. Deep Reinforcement Learning in AdTech
  13. Reinforcement Learning in Image Processing
  14. Deep Reinforcement Learning in NLP
  15. Appendix 1.Further Topics in Reinforcement Learning
(HTML tags aren't allowed.)

Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python
Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python
Learn how to use TensorFlow 2.0 to build machine learning and deep learning models with complete examples. 

The book begins with introducing TensorFlow 2.0 framework and the major changes from its last release. Next, it focuses on building Supervised Machine Learning models using TensorFlow 2.0.
...
Python Artificial Intelligence Projects for Beginners: Get up and running with Artificial Intelligence using 8 smart and exciting AI applications
Python Artificial Intelligence Projects for Beginners: Get up and running with Artificial Intelligence using 8 smart and exciting AI applications

Build smart applications by implementing real-world artificial intelligence projects

Key Features

  • Explore a variety of AI projects with Python
  • Get well-versed with different types of neural networks and popular deep learning algorithms
  • Leverage popular...
Natural Language Processing with TensorFlow: Teach language to machines using Python's deep learning library
Natural Language Processing with TensorFlow: Teach language to machines using Python's deep learning library

Write modern natural language processing applications using deep learning algorithms and TensorFlow

Key Features

  • Focuses on more efficient natural language processing using TensorFlow
  • Covers NLP as a field in its own right to improve understanding for choosing TensorFlow...

Functional Programming in C++: How to improve your C++ programs using functional techniques
Functional Programming in C++: How to improve your C++ programs using functional techniques
Summary

Functional Programming in C++ teaches developers the practical side of functional programming and the tools that C++ provides to develop software in the functional style. This in-depth guide is full of useful diagrams that help you understand FP concepts and begin to think functionally.

...
Bayesian Statistics the Fun Way: Understanding Statistics and Probability with Star Wars, LEGO, and Rubber Ducks
Bayesian Statistics the Fun Way: Understanding Statistics and Probability with Star Wars, LEGO, and Rubber Ducks
Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples.

Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian
...
Hands-On Markov Models with Python: Implement probabilistic models for learning complex data sequences using the Python ecosystem
Hands-On Markov Models with Python: Implement probabilistic models for learning complex data sequences using the Python ecosystem

Unleash the power of unsupervised machine learning in Hidden Markov Models using TensorFlow, pgmpy, and hmmlearn

Key Features

  • Build a variety of Hidden Markov Models (HMM)
  • Create and apply models to any sequence of data to analyze, predict, and extract valuable...
©2020 LearnIT (support@pdfchm.net) - Privacy Policy