Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib

Buy

Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more. 

Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis. 

After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning.

What You'll Learn

  • Work with vectors and matrices using NumPy
  • Plot and visualize data with Matplotlib
  • Perform data analysis tasks with Pandas and SciPy
  • Review statistical modeling and machine learning with statsmodels and scikit-learn
  • Optimize Python code using Numba and Cython
Who This Book Is For


Developers who want to understand how to use Python and its related ecosystem for numerical computing. 
(HTML tags aren't allowed.)

Python Machine Learning
Python Machine Learning

Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics

About This Book

  • Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization
  • Learn effective strategies and best practices to...
Deep Learning with PyTorch: A practical approach to building neural network models using PyTorch
Deep Learning with PyTorch: A practical approach to building neural network models using PyTorch

Build neural network models in text, vision and advanced analytics using PyTorch

Key Features

  • Learn PyTorch for implementing cutting-edge deep learning algorithms.
  • Train your neural networks for higher speed and flexibility and learn how to implement them in various...
Hands-On Data Structures and Algorithms with Python: Write complex and powerful code using the latest features of Python 3.7, 2nd Edition
Hands-On Data Structures and Algorithms with Python: Write complex and powerful code using the latest features of Python 3.7, 2nd Edition

Learn to implement complex data structures and algorithms using Python

Key Features

  • Understand the analysis and design of fundamental Python data structures
  • Explore advanced Python concepts such as Big O notation and dynamic programming
  • Learn functional...

Python Machine Learning Cookbook
Python Machine Learning Cookbook

100 recipes that teach you how to perform various machine learning tasks in the real world

About This Book

  • Understand which algorithms to use in a given context with the help of this exciting recipe-based guide
  • Learn about perceptrons and see how they are used to build neural...
R Deep Learning Essentials
R Deep Learning Essentials

Key Features

  • Harness the ability to build algorithms for unsupervised data using deep learning concepts with R
  • Master the common problems faced such as overfitting of data, anomalous datasets, image recognition, and performance tuning while building the models
  • Build models relating to neural...
Python Deep Learning: Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow, 2nd Edition
Python Deep Learning: Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow, 2nd Edition

Learn advanced state-of-the-art deep learning techniques and their applications using popular Python libraries

Key Features

  • Build a strong foundation in neural networks and deep learning with Python libraries
  • Explore advanced deep learning techniques and their applications...
©2020 LearnIT (support@pdfchm.net) - Privacy Policy