Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
R Deep Learning Essentials

Buy
R Deep Learning Essentials, 9781785280580 (1785280589), Packt Publishing, 2016

Key Features

  • Harness the ability to build algorithms for unsupervised data using deep learning concepts with R
  • Master the common problems faced such as overfitting of data, anomalous datasets, image recognition, and performance tuning while building the models
  • Build models relating to neural networks, prediction and deep prediction

Book Description

Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data by using model architectures. With the superb memory management and the full integration with multi-node big data platforms, the H2O engine has become more and more popular among data scientists in the field of deep learning.

This book will introduce you to the deep learning package H2O with R and help you understand the concepts of deep learning. We will start by setting up important deep learning packages available in R and then move towards building models related to neural networks, prediction, and deep prediction, all of this with the help of real-life examples.

After installing the H2O package, you will learn about prediction algorithms. Moving ahead, concepts such as overfitting data, anomalous data, and deep prediction models are explained. Finally, the book will cover concepts relating to tuning and optimizing models.

What you will learn

  • Set up the R package H2O to train deep learning models
  • Understand the core concepts behind deep learning models
  • Use Autoencoders to identify anomalous data or outliers
  • Predict or classify data automatically using deep neural networks
  • Build generalizable models using regularization to avoid overfitting the training data

About the Author

Dr. Joshua F. Wiley is a lecturer at Monash University and a senior partner at Elkhart Group Limited, a statistical consultancy. He earned his PhD from the University of California, Los Angeles. His research focuses on using advanced quantitative methods to understand the complex interplays of psychological, social, and physiological processes in relation to psychological and physical health. In statistics and data science, Joshua focuses on biostatistics and is interested in reproducible research and graphical displays of data and statistical models. Through consulting at Elkhart Group Limited and his former work at the UCLA Statistical Consulting Group, Joshua has helped a wide array of clients, ranging from experienced researchers to biotechnology companies. He develops or codevelops a number of R packages including varian, a package to conduct Bayesian scale-location structural equation models, and MplusAutomation, a popular package that links R to the commercial Mplus software.

Table of Contents

  1. Getting Started with Deep Learning
  2. Training a Prediction Model
  3. Preventing Overfitting
  4. Identifying Anomalous Data
  5. Training Deep Prediction Models
  6. Tuning and Optimizing Models
  7. Bibliography
(HTML tags aren't allowed.)

Random Matrix Theory and Wireless Communications
Random Matrix Theory and Wireless Communications
Random matrix theory has found many applications in physics, statistics and engineering since its inception. Although early developments were motivated by practical experimental problems, random matrices are now used in fields as diverse as Riemann hypothesis, stochastic differential equations, condensed matter physics, statistical physics, chaotic...
Discrete Control Systems
Discrete Control Systems

Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systems for continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain...

Artificial Intelligence Basics: A Non-Technical Introduction
Artificial Intelligence Basics: A Non-Technical Introduction

Artificial intelligence touches nearly every part of your day. While you may initially assume that technology such as smart speakers and digital assistants are the extent of it, AI has in fact rapidly become a general-purpose technology, reverberating across industries including transportation, healthcare, financial services, and...


Rough Computing: Theories, Technologies and Applications
Rough Computing: Theories, Technologies and Applications
Rough set theory is a new soft computing tool which deals with vagueness and uncertainty. It has attracted the attention of researchers and practitioners worldwide, and has been successfully applied to many fields such as knowledge discovery, decision support, pattern recognition, and machine learning.

Rough Computing: Theories,...

Applied Intelligent Control of Induction Motor Drives
Applied Intelligent Control of Induction Motor Drives

Induction motors are the most important workhorses in industry. They are mostly used as constant-speed drives when fed from a voltage source of fixed frequency. Advent of advanced power electronic converters and powerful digital signal processors, however, has made possible the development of high performance, adjustable speed AC motor...

Intelligent Control: A Hybrid Approach Based on Fuzzy Logic, Neural Networks and Genetic Algorithms (Studies in Computational Intelligence)
Intelligent Control: A Hybrid Approach Based on Fuzzy Logic, Neural Networks and Genetic Algorithms (Studies in Computational Intelligence)

Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type...

©2020 LearnIT (support@pdfchm.net) - Privacy Policy