Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Deep Learning Cookbook: Practical Recipes to Get Started Quickly

Buy

Deep learning doesn’t have to be intimidating. Until recently, this machine-learning method required years of study, but with frameworks such as Keras and Tensorflow, software engineers without a background in machine learning can quickly enter the field. With the recipes in this cookbook, you’ll learn how to solve deep-learning problems for classifying and generating text, images, and music.

Each chapter consists of several recipes needed to complete a single project, such as training a music recommending system. Author Douwe Osinga also provides a chapter with half a dozen techniques to help you if you’re stuck. Examples are written in Python with code available on GitHub as a set of Python notebooks.

You’ll learn how to:

  • Create applications that will serve real users
  • Use word embeddings to calculate text similarity
  • Build a movie recommender system based on Wikipedia links
  • Learn how AIs see the world by visualizing their internal state
  • Build a model to suggest emojis for pieces of text
  • Reuse pretrained networks to build an inverse image search service
  • Compare how GANs, autoencoders and LSTMs generate icons
  • Detect music styles and index song collections
(HTML tags aren't allowed.)

Deep Learning with TensorFlow: Explore neural networks and build intelligent systems with Python, 2nd Edition
Deep Learning with TensorFlow: Explore neural networks and build intelligent systems with Python, 2nd Edition

Delve into neural networks, implement deep learning algorithms, and explore layers of data abstraction with the help of TensorFlow.

Key Features

  • Learn how to implement advanced techniques in deep learning with Google's brainchild, TensorFlow
  • Explore deep neural...
Introduction to Probability Models
Introduction to Probability Models

Introduction to Probability Models, Twelfth Edition, is the latest version of Sheldon Ross's classic bestseller. This trusted book introduces the reader to elementary probability modelling and stochastic processes and shows how probability theory can be applied in fields such as engineering, computer science, management...

Python Machine Learning Case Studies: Five Case Studies for the Data Scientist
Python Machine Learning Case Studies: Five Case Studies for the Data Scientist
Embrace machine learning approaches and Python to enable automatic rendering of rich insights and solve business problems. The book uses a hands-on case study-based approach to crack real-world applications to which machine learning concepts can be applied. These smarter machines will enable your business processes to achieve efficiencies on...

Artificial Intelligence: How it Changes the Future
Artificial Intelligence: How it Changes the Future
Artificial Intelligence lives among us. They are in smartphones; they help people find information; they also learn the behaviors of their owners and produce relevant contents to enhance their user’s experience and encourage them to continue using the device. Some people are actually right to be concerned when AI is deeply entrenched like...
TensorFlow 2.0 Quick Start Guide: Get up to speed with the newly introduced features of TensorFlow 2.0
TensorFlow 2.0 Quick Start Guide: Get up to speed with the newly introduced features of TensorFlow 2.0

Perform supervised and unsupervised machine learning and learn advanced techniques such as training neural networks.

Key Features

  • Train your own models for effective prediction, using high-level Keras API
  • Perform supervised and unsupervised machine learning and learn...
Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems

Graphics in this book are printed in black and white.

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data....

©2020 LearnIT (support@pdfchm.net) - Privacy Policy