Until now, most of the advances in robotics have taken place in structured environments. Scientists and engineers have designed highly sophisticated robots, but most are still only able to operate and move in predetermined, planned environments designed specifically for the robots and...
The subject of calculus of variations is to find optimal solutions to engineering problems where the optimum may be a certain quantity, a shape, or a function. Applied Calculus of Variations for Engineers addresses this very important mathematical area applicable to many engineering disciplines. Its unique,...
This self-contained book provides three fundamental and generic approaches (logical, probabilistic, and modal) to representing and reasoning with agent epistemic states, specifically in the context of decision making. Each of these approaches can be applied to the construction of intelligent software agents for making decisions, thereby...
An in-depth examination of the cutting edge of biometrics
This book fills a gap in the literature by detailing the recent advances and emerging theories, methods, and applications of biometric systems in a variety of infrastructures. Edited by a panel of experts, it provides comprehensive coverage of:
Algorithms and Theory of Computation Handbook, Second Edition: General Concepts and Techniques provides an up-to-date compendium of fundamental computer science topics and techniques. It also illustrates how the topics and techniques come together to deliver efficient solutions to important practical problems. Along with...
The impact of proton exchange membrane (PEM) fuel cells on energy generation will parallel the impact of the integrated circuit on information technology. The underlying processes in PEM fuel cells have strong ties to energy generation at the mitochondrial level in organic life. The potential applications range from the micron scale to large...
A Research-Driven Resource on Building Biochemical Systems to Perform Information Processing Functions
Information Processing by Biochemical Systems describes fully delineated biochemical systems, organized as neural network–type assemblies. It explains the relationship between these two apparently unrelated fields,...
The purpose of this book is to collect contributions that deal with the use of nature inspired metaheuristics for solving multi-objective combinatorial optimization problems. Such a collection intends to provide an overview of the state-of-the-art developments in this field, with the aim of motivating more researchers in operations research,...
With mathematical and computational models furthering our understanding of lung mechanics, function and disease, this book provides an all-inclusive introduction to the topic from a quantitative standpoint. Focusing on inverse modeling, the reader is guided through the theory in a logical progression, from the simplest models up to state-of-the-art...
The finite element method (FEM) is a computational technique for solving problems which are described by partial differential equations or which can be formulated as functional minimization. The FEM is commonly used in the design and development of products, especially where structural analysis is involved. The simple object model of the...
Computational techniques based on simulation have now become an essential part of the statistician's toolbox. It is thus crucial to provide statisticians with a practical understanding of those methods, and there is no better way to develop intuition and skills for simulation than to use simulation to solve statistical problems. Introducing...