There is a significant difference between designing a new algorithm, proving its correctness, and teaching it to an audience. When teaching algorithms, the teacher's main goal should be to convey the underlying ideas and to help the students form correct mental models related to the algorithm. This process can often be facilitated by...
This graduate-level, course-based text is devoted to the 3+1 formalism of general relativity, which also constitutes the theoretical foundations of numerical relativity. The book starts by establishing the mathematical background (differential geometry, hypersurfaces embedded in space-time, foliation of space-time by a family of space-like...
An up-to-date and comprehensive treatment of the fundamentals of scheduling theory, including recent advances and state-of-the-art topics
Principles of Sequencing and Scheduling strikes a unique balance between theory and practice, providing an accessible introduction to the concepts, methods, and results of scheduling theory and...
The suggestion for writing this book came from my long-time friend,
Professor Colin diCenzo, FIEEE, to whom I owe many thanks for his
encouragement. The outline of the book was started many years ago, as a
somewhat sparse series o f lecture notes that I used in support of an electrical
engineering graduate course at McMaster...
Most companies ignore one of their best opportunities for honing competitive advantage: the opportunity to proactively manage business cycles and macroeconomic turbulence. Despite the profound impact that the business cycle has on the fortunes and fate of so many businesses large and small--and the employees and investors...
This book presents the application of microwave literature for designing lumped/semi-lumped filters and combline/iris-coupled microwave cavity filters. It provides the physical understanding of the terms and characteristics of radio frequency (RF) filters. The book complements engineering text books on RF components and provides support for...
This book exposes a number of mathematical models for fracture of growing difficulty. All models are treated in a unified way, based on incremental energy minimization. They differ from each other by the assumptions made on the inelastic part of the total energy, here called the "cohesive energy". Each model describes a specific...
“Newton’s Gravity” conveys the power of simple mathematics to tell the fundamental truth about nature. Many people, for example, know the tides are caused by the pull of the Moon and to a lesser extent the Sun. But very few can explain exactly how and why that happens. Fewer still can calculate the actual pulls of the...
This book provides an introduction into the fundamentals of non-relativistic quantum mechanics. In Part 1, the essential principles are developed. Applications and extensions of the formalism can be found in Part 2. The book includes not only material that is presented in traditional textbooks on quantum mechanics, but also discusses in...
Finite-time stability (FTS) is a more practical concept than classical Lyapunov stability, useful for checking whether the state trajectories of a system remain within pre-specified bounds over a finite time interval. In a linear systems framework, FTS problems can be cast as convex optimization problems and solved by the use of effective...
This book focuses on Renewable Energy (RE) governance - the institutions, plans, policies and stakeholders that are involved in RE implementation - and the complexities and challenges associated with this much discussed energy area. Whilst RE technologies have advanced and become cheaper, governance schemes rarely support those technologies...
Despite efforts to increase renewables, the global energy mix is still likely to be dominated by fossil-fuels in the foreseeable future, particularly gas for electricity and oil for land, air and sea transport. The reliance on depleting conventional oil and natural gas resources and the geographic distribution of these reserves can have...