Neural networks have been a mainstay of artificial intelligence since its earliest days. Now, exciting new technologies such as deep learning and convolution are taking neural networks in bold new directions. In this book, we will demonstrate the neural networks in a variety of real-world tasks such as image recognition and data science. We...
Suitable for a first year graduate course, this textbook unites the applications of numerical mathematics and scientific computing to the practice of chemical engineering. Written in a pedagogic style, the book describes basic linear and nonlinear algebric systems all the way through to stochastic methods, Bayesian statistics and parameter...
This book was written in response to the growing demand for a text that provides a unified treatment of linear and nonlinear complex valued adaptive filters, and methods for the processing of general complex signals (circular and noncircular). It brings together adaptive filtering algorithms for feedforward (transversal) and feedback...
"Professional Financial Computing Using Excel and VBA is an admirable exposition that bridges the theoretical underpinnings of financial engineering and its application which usually appears as a "black-box" software application. The book opens the black-box and reveals the architecture of risk-modeling and financial...
In this book, efficient and scalable coevolutionary algorithms for distributed, network-based decision-making, which utilize objective functions are developed in a networked environment where internode communications are a primary factor in system performance.A theoretical foundation for this class of coevolutionary algorithms is introduced...
"This book addresses different aspects of probabilistic modeling, stochastic methods, probabilistic distributions, data analysis, optimization methods, and probabilistic methods in risk analysis"--...
The book provides a comprehensive overview of the latest econometric methods for studying the dynamics of macroeconomic and financial time series. It examines alternative methodological approaches and concepts, including quantile spectra and co-spectra, and explores topics such as non-linear and non-stationary behavior, stochastic...
This book investigates and reviews recent advanced techniques and important applications in vehicular communications and networking (VCN) from a novel perspective of the combination and integration of VCN and connected vehicles, which provides a significant scientific and technical support for future 5G-based...
Introduction to Probability Models, Twelfth Edition, is the latest version of Sheldon Ross's classic bestseller. This trusted book introduces the reader to elementary probability modelling and stochastic processes and shows how probability theory can be applied in fields such as engineering, computer science, management...
Understanding how a single shape can incur a complex range of transformations, while defining the same perceptually obvious figure, entails a rich and challenging collection of problems, at the interface between applied mathematics, statistics and computer science. The program on Mathematics of Shapes and Applications, was held at the Institute...
Mathematical Methods and Algorithms for Signal Processing tackles the challenge of providing readers and practitioners with the broad tools of mathematics employed in modern signal processing. Building from an assumed background in signals and stochastic processes, the book provides a solid foundation in analysis, linear...
Time Series Analysis and Its Applications presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception...