Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and...
This book presents a comprehensive overview of medical image analysis. Practical in approach, the text is uniquely structured by potential applications. Features: presents learning objectives, exercises and concluding remarks in each chapter, in addition to a glossary of abbreviations; describes a range of common imaging techniques,...
Time Series Analysis and Its Applications presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception...
A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms
Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant...
ETAPS 2007 is the tenth instance of the European Joint Conferences on Theory
and Practice of Software, and thus a cause for celebration.
The events that comprise ETAPS address various aspects of the system development
process, including specification, design, implementation, analysis and...
Provides a comprehensive and updated study of GARCH models and their applications in finance, covering new developments in the discipline
This book provides a comprehensive and systematic approach to understanding GARCH time series models and their applications whilst presenting the most advanced results...
Some of the hardest computational problems have been successfully attacked through the use of probabilistic algorithms, which have an element of randomness to them. Concepts from the field of probability are also increasingly useful in analyzing the performance of algorithms, broadening our understanding beyond that provided by the...
This book is based on over a dozen years teaching a Bayesian Statistics course. The material presented here has been used by students of different levels and disciplines, including advanced undergraduates studying Mathematics and Statistics and students in graduate programs in Statistics, Biostatistics, Engineering, Economics,...
Gain an accelerated introduction to domain-specific languages in R, including coverage of regular expressions. This compact, in-depth book shows you how DSLs are programming languages specialized for a particular purpose, as opposed to general purpose programming languages. Along the way, you’ll learn to specify tasks...
Student-Friendly Coverage of Probability, Statistical Methods, Simulation, and Modeling Tools
Incorporating feedback from instructors and researchers who used the previous edition, Probability and Statistics for Computer Scientists, Second Edition helps students understand general methods of stochastic...