Continuing advances in biomedical research and statistical methods call for a constant stream of updated, cohesive accounts of new developments so that the methodologies can be properly implemented in the biomedical field. Responding to this need, Computational Methods in Biomedical Research explores important current and emerging...
Machine Learning:Discriminative and Generative covers the main contemporary themes and tools in machine learning ranging from Bayesian probabilistic models to discriminative support-vector machines. However, unlike previous books that only discuss these rather different approaches in isolation, it bridges the two...
For the first time, eleven experts in the fields of signal processing and biomedical engineering have contributed to an edition on the newest theories and applications of fuzzy logic, neural networks, and algorithms in biomedicine. Nonlinear Biomedical Signal Processing, Volume I provides comprehensive coverage of nonlinear signal...
Principles for constructing intelligent systems
Design of Logic-based Intelligent Systems develops principles andmethods for constructing intelligent systems for complex tasks thatare readily done by humans but are difficult for machines. CurrentArtificial Intelligence (AI) approaches rely on various constructsand methods (production...
Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify...
Now updated—the systematic introductory guide to modern analysis of large data sets
As data sets continue to grow in size and complexity, there has been an inevitable move towards indirect, automatic, and intelligent data analysis in which the analyst works via more complex and sophisticated software tools. This book...
The twenty-first century has seen a breathtaking expansion of statistical methodology,
both in scope and in influence. “Big data,” “data science,” and “machine learning” have
become familiar terms in the news, as statistical methods are brought to bear upon the
enormous data sets of modern science...
The increasing availability of data in our current, informationoverloaded society has led to the need for valid tools for itsmodelling and analysis. Data mining and applied statistical methodsare the appropriate tools to extract knowledge from such data. Thisbook provides an accessible introduction to data mining methods ina consistent and...
Welcome to the latest volume of AI Game Programming Wisdom! AI Game Programming Wisdom 4 includes a collection of more than 50 new articles featuring cutting-edge techniques, algorithms, and architectures written by industry professionals for use in commercial game development. Organized into 7 sections, this comprehensive volume explores...
Probabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following parts demonstrate how these...
Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and...