Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Python Data Analysis
Python Data Analysis

Key Features

  • Find, manipulate, and analyze your data using the Python 3.5 libraries
  • Perform advanced, high-performance linear algebra and mathematical calculations with clean and efficient Python code
  • An easy-to-follow guide with realistic examples that are frequently used in real-world data...
Knapsack Problems: Algorithms and Computer Implementations (Wiley Series in Discrete Mathematics and Optimization)
Knapsack Problems: Algorithms and Computer Implementations (Wiley Series in Discrete Mathematics and Optimization)
Here is a state of art examination on exact and approximate algorithms for a number of important NP-hard problems in the field of integer linear programming, which the authors refer to as ``knapsack.'' Includes not only the classical knapsack problems such as binary, bounded, unbounded or binary multiple, but also less familiar problems...
Numerical Methods for the Life Scientist: Binding and Enzyme Kinetics Calculated with GNU Octave and MATLAB
Numerical Methods for the Life Scientist: Binding and Enzyme Kinetics Calculated with GNU Octave and MATLAB

Enzyme kinetics, binding kinetics and pharmacological dose-response curves are currently analyzed by a few standard methods. Some of these, like Michaelis-Menten enzyme kinetics, use plausible approximations, others, like Hill equations for dose-response curves, are outdated. Calculating realistic reaction schemes requires numerical...

Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning
Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning

This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or...

TensorFlow for Deep Learning: From Linear Regression to Reinforcement Learning
TensorFlow for Deep Learning: From Linear Regression to Reinforcement Learning

Learn how to solve challenging machine learning problems with TensorFlow, Google’s revolutionary new software library for deep learning. If you have some background in basic linear algebra and calculus, this practical book introduces machine-learning fundamentals by showing you how to design systems capable of detecting objects...

Multivariate Time Series Analysis: With R and Financial Applications
Multivariate Time Series Analysis: With R and Financial Applications

An accessible guide to the multivariate time series tools used in numerous real-world applications

Multivariate Time Series Analysis: With R and Financial Applications is the much anticipated sequel coming from one of the most influential and prominent experts on the topic of time series. Through a...

Data Mining and Statistics for Decision Making
Data Mining and Statistics for Decision Making
Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify...
Introductory Statistics with R (Statistics and Computing)
Introductory Statistics with R (Statistics and Computing)
This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the...
Digital Signal Processing with Examples in MATLAB® (Electrical Engineering & Applied Signal Processing Series)
Digital Signal Processing with Examples in MATLAB® (Electrical Engineering & Applied Signal Processing Series)

Based on fundamental principles from mathematics, linear systems, and signal analysis, digital signal processing (DSP) algorithms are useful for extracting information from signals collected all around us. Combined with today’s powerful computing capabilities, they can be used in a wide range of application areas, including...

Scientific Computing with Python 3
Scientific Computing with Python 3

Key Features

  • Your ultimate resource for getting up and running with Python numerical computations
  • Explore numerical computing and mathematical libraries using Python 3.x code with SciPy and NumPy modules
  • A hands-on guide to implementing mathematics with Python, with complete...
The R Student Companion
The R Student Companion

R is the amazing, free, open-access software package for scientific graphs and calculations used by scientists worldwide. The R Student Companion is a student-oriented manual describing how to use R in high school and college science and mathematics courses. Written for beginners in scientific computation, the book...

Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems

Graphics in this book are printed in black and white.

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data....

Result Page: 62 61 60 59 58 57 56 55 54 53 
©2019 LearnIT (support@pdfchm.net) - Privacy Policy