This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or...

Learn how to solve challenging machine learning problems with TensorFlow, Google’s revolutionary new software library for deep learning. If you have some background in basic linear algebra and calculus, this practical book introduces machine-learning fundamentals by showing you how to design systems capable of detecting objects...

Graphics in this book are printed in black and white.

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data....

From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural...

With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field.

Using examples drawn from biomedicine and biomedical engineering, this essential reference book brings you comprehensive coverage of all the major techniques currently available to build computer-assisted decision support systems. You will find practical solutions for biomedicine based on current theory and applications of neural networks,...

Machine learning is an intimidating subject until you know the fundamentals. If you understand basic coding concepts, this introductory guide will help you gain a solid foundation in machine learning principles. Using the R programming language, you’ll first start to learn with regression modelling and then move into more...

The history of computing has its origins at the outset of civilization. As towns and communities evolved there was a need for increasingly sophisticated calculations. This book traces the evolution of computation, from early civilisations 3000 B.C. to the latest key developments in modern times.

"This book clarifies many of the mysteries of Neural Networks and related optimization techniques for researchers in both economics and finance. It contains many practical examples backed up with computer programs for readers to explore. I recommend it to anyone who wants to understand methods used in nonlinear forecasting." Blake...

This book was originally titled “Fundamentals of the New Artificial Intelligence: Beyond Traditional Paradigms.” I have changed the subtitle to better represent the contents of the book. The basic philosophy of the original version has been kept in the new edition. That is, the book covers the most essential and widely employed material...

Fuzzy Cognitive Maps (FCM) constitute cognitive models in the form of fuzzy directed graphs consisting of two basic elements: the nodes, which basically correspond to “concepts” bearing different states of activation depending on the knowledge they represent, and the “edges” denoting the causal effects...

A thought-provoking look at statistical learning theory and its role in understanding human learning and inductive reasoning

A joint endeavor from leading researchers in the fields of philosophy and electrical engineering, An Elementary Introduction to Statistical Learning Theory is a comprehensive and accessible...